The role of β-arrestin2-dependent signaling in thoracic aortic aneurysm formation in a murine model of Marfan syndrome

نویسندگان

  • James W. Wisler
  • Emily M. Harris
  • Michael Raisch
  • Lan Mao
  • Jihee Kim
  • Howard A. Rockman
  • Robert J. Lefkowitz
چکیده

Ang II type 1a receptor (AT1aR)-mediated activation of MAPKs contributes to thoracic aortic aneurysm (TAA) development in Marfan syndrome (MFS). β-Arrestin2 (βarr2) is known to mediate AT1aR-dependent MAPK activation, as well as proproliferative and profibrotic signaling in aortic vascular smooth muscle cells. Therefore, we investigated whether βarr2-dependent signaling contributes to TAA formation in MFS. We used a murine model of MFS [fibrillin (Fbn)(C1039G/+)] to generate an MFS murine model in combination with genetic βarr2 deletion (Fbn(C1039G/+)/βarr2(-/-)). Fbn(C1039G/+)/βarr2(-/-) mice displayed delayed aortic root dilation compared with Fbn(C1039G/+) mice. The mRNA and protein expression of several mediators of TAA formation, including matrix metalloproteinase (MMP)-2 and -9, was reduced in the aorta of Fbn(C1039G/+)/βarr2(-/-) mice relative to Fbn(C1039G/+) mice. Activation of ERK1/2 was also decreased in the aortas of Fbn(C1039G/+)/βarr2(-/-) mice compared with Fbn(C1039G/+) animals. Small interfering RNA targeting βarr2 inhibited angiotensin-stimulated expression of proaneurysmal signaling mediators in primary aortic root smooth muscle cells. Angiotensin-stimulated expression of the proaneurysmal signaling mediators MMP-2 and -9 was inhibited by blockade of ERK1/2 or the EGF receptor, whereas blockade of the transforming growth factor-β receptor had no effect. These results suggest that βarr2 contributes to TAA formation in MFS by regulating ERK1/2-dependent expression of proaneurysmal genes and proteins downstream of the AT1aR. Importantly, this demonstration of the unique signaling mechanism by which βarr2 contributes to aneurysm formation identifies multiple novel, potential therapeutic targets in MFS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis.

TGF-β is essential for vascular development; however, excess TGF-β signaling promotes thoracic aortic aneurysm and dissection in multiple disorders, including Marfan syndrome. Since the pathology of TGF-β overactivity manifests primarily within the arterial media, it is widely assumed that suppression of TGF-β signaling in vascular smooth muscle cells will ameliorate aortic disease. We tested t...

متن کامل

Marfan syndrome: from gene to therapy.

PURPOSE OF REVIEW Although historically Marfan syndrome (MFS) has always been considered as a condition caused by the deficiency of a structural extracellular matrix protein, fibrillin-1, the study of Marfan mouse models and Marfan-related conditions has shifted our current understanding to a pathogenic model that involves dysregulation of the cytokine-transforming growth factor beta (TGF-β) si...

متن کامل

Premature aortic smooth muscle cell differentiation contributes to matrix dysregulation in Marfan Syndrome

Thoracic aortic aneurysm and dissection are life-threatening complications of Marfan syndrome (MFS). Studies of human and mouse aortic samples from late stage MFS demonstrate increased TGF-β activation/signaling and diffuse matrix changes. However, the role of the aortic smooth muscle cell (SMC) phenotype in early aneurysm formation in MFS has yet to be fully elucidated. As our objective, we in...

متن کامل

Further Evidence Supporting a Protective Role of Transforming Growth Factor-β (TGFβ) in Aortic Aneurysm and Dissection.

Aortic disease arises from abnormalities in size or structure of the vessel wall. An (fusiform) aneurysm is a localized dilatation of the aorta, usually defined as >150% of the normal diameter for a given segment. Aortic dissection is bleeding into the media layer, often with propagation of a false lumen. Both diseases can occur independently, although dilated aortas are at increased risk of di...

متن کامل

Elevated expression levels of lysyl oxidases protect against aortic aneurysm progression in Marfan syndrome.

Patients with Marfan syndrome (MFS) are at high risk of life-threatening aortic dissections. The condition is caused by mutations in the gene encoding fibrillin-1, an essential component in the formation of elastic fibers. While experimental findings in animal models of the disease have shown the involvement of transforming growth factor-β (TGF-β)- and angiotensin II-dependent pathways, alterat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2015